You are about leaving the Roche Diagram website now.


Influencing Medical Decisions in a World of “Omics”: Personalised and Precision Diagnosis

Learn how precision diagnosis and personalised diagnostics has a key role to play in making personalised healthcare real for citizens everywhere.

In the medical world, smaller is always better. And one field in particular is helping to zero in on a new level of care. “Omics” is used to describe the next generation of personalised diagnostics in the lab, with the potential of treating patients at a molecular level1 — instead of the traditional, symptom-driven practice2 of medicine. This opens up a more personalised approach to precision medicine, influencing every stage of diagnostics1 from preventive testing and early intervention, to diagnosing hereditary diseases in the womb and in newborns, to predicting adverse reactions to certain medications.

But the concept of precision diagnosis is not new3. For more than a century, blood typing3 has informed the way we approach blood transfusions. What has changed is the unprecedented amount of genetic information3 now available and the development of powerful computational tools to analyse them, eventually giving rise to new methods of characterising patients and more accurate, personalised diagnoses1 — by taking their clinical, molecular, and genomic factors2 into account.

In the treatment of Duchenne Muscular Dystrophy (DMD), for instance, the accurate characterisation of genetic mutations can help to establish the prognosis and determine eligibility for these treatments.1

precision diagnosis and personalised diagnostics

Omics-driven approaches to diagnosis can reduce the time taken from days and weeks to just 96 minutes in one case.

Omics Beyond Genomics

Part of omics is trying to decipher how an individual’s genomes6, their environment and biological history can impact their risk for certain diseases and influence their response to medical treatments. This is the fundamental question precision diagnostics seeks to answer. Pathophysiological traits unearthed by omics will allow physicians to prescribe individualised treatments and better predict population health to aid policymakers.

“Omics is really seeing the entire collection of molecules that make up you. Basically, it’s your DNA, it’s your proteins, it’s all your metabolites, and such,” explained Professor Michael Snyder7, chair of genetics at Stanford University.

By offering a holistic view of a patient’s condition, advances in omics technologies are supporting the transition to precision diagnostics — from the detection of genes4 (genomics), mRNA (transcriptomics), proteins (proteomics), epigenomic factors (epigenomics) to metabolites (metabolomics).

Doing More with Less

The application of omics technologies is especially helpful8 for patients suffering from late stages of chronic, acute, complex2 and novel infectious diseases. (In short, everything from diabetes to strokes, cancer to COVID-19). In such cases, it is critical to provide timely, personalised treatment.  

For example, Next-Generation Sequencing (NGS)9 has contributed substantially to advances in omics10. NGS has replaced Sanger sequencing of single gene fragments and is able to generate information on millions of DNA and RNA sequences in just a single test. It is also able to detect rare genetic variants and Single Nucleotide Polymorphisms (SNPs). As NGS can be applied to both tissue and blood samples, it is invaluable when insufficient tumour material is available for sequential single biomarker tests.

Prof Jee Hyun Kim, a breast cancer specialist and Director of the Precision Medicine Centre at Seoul National University Bundang Hospital, South Korea, says that NGS can explain a particular prognosis or identify a matched therapy for a specific indication.

This helps to eliminate the need for patients suffering from debilitating symptoms due to rare, undiagnosed conditions to undergo multiple tests (a “diagnostic Odyssey” in medical parlance). “What we need are digital tools, algorithms and AI that can match patients to a clinical trial in a manner that is unified and country-wide, so that fewer resources and less manpower is needed,” says Professor Kim Jee-Hyun.

precision diagnosis and personalised diagnostics

The Hospital of the Future

Digital solutions2 may hold the key to boosting the implementation of mainstream predictive and precision diagnostics, including utilising machine learning and Artificial Intelligence (AI) for multimodal data aggregation, multifactor examination, and building a database of clinical predictors for decision support.

In the future, Professor Kim envisions AI-driven digital platforms quickly pairing drugs and clinical trials for patients based on their genomic data collected during diagnosis, ensuring that every patient is matched for the best treatment outcomes — benefitting both patients and clinicians in the process. “Together with our patients,” Professor Kim says, “we’ll be looking into these systems to select options suggested by AI.”

Dr Jan-Gowth Chang12, professor and director of laboratory medicine at the centre for precision medicine and epigenome research centre of China Medical University Hospital, agrees. Dr Chang believes that the confluence of big data, AI and smart diagnostic algorithms could make omics even more relevant in the future. “We are just beginning to integrate NGS and clinical data, with two groups collecting clinical and image data and incorporating NGS, SNP or big data,” he shares.

Diagram Dialogues

 Subscribe to our podcast to hear expert insights from the world of diagnostics


1University of California San Francisco (2021). ‘Omics Medicine. Retrieved from

2Ahmed, Z. (2020) Practicing Precision Medicine with Intelligently Integrative Clinical and Multi-Omics Data Analysis. Retrieved from

3Collins, F., Varmus, H. A New Initiative on Precision Medicine. Retrieved from

4Morello, G., Salomone, S., D’agata, V., Conforti, F., Cavallaro, S. (2020). From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Retrieved from

5Suzuki, N., Akiyama, T., Warita, H., Aoki, M. (2020). Omics Approach to Axonal Dysfunction of Motor Neurons in Amyotrophic Lateral Sclerosis (ALS). Retrieved from

6Lau, E., Wu, J. (2018). Omics, Big Data, and Precision Medicine in Cardiovascular Sciences. Circulation Research, 122(9), 1165 — 1168. Retrieved from

7NASA Video. (2016). (Video 1 of 8) Introduction to Omics: 360 Degree View of You. YouTube. Retrieved from

8University of California San Francisco (2021). Spotlight: Next-Gen DNA Sequencing Speeds Diagnosis. Retrieved from

9Tan, D. (2020). Next-Generation Sequencing (NGS) Drives Precision Oncology in Singapore. Retrieved from

10Kulski, J. (2016). Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications. Retrieved from

11Jee-Hyun, K. (2021). NGS and Precision Oncology in South Korea: Insights from Prof Kim Jee-Hyun. Retrieved from

12Chang, J., Hsieh, J. (2021). NGS and Precision Oncology in Taiwan: Insights from Dr Jan-Gowth Chang and Dr Jason CH Hsieh. Retrieved from

*The information contained in this article was extracted from Edition 2022, Vol 11.

Read this volume online

You May Also Like

19 August 2021

How Precision Oncology is Transforming Patient Care by Professor David Thomas

Professor David Thomas, Director of the Kinghorn Cancer Centre and Head of Genomic Cancer Medicine at the Garvan Institute of Medical Research in Australia, believes transforming patient care is possible by…

Read More
19 August 2021

The Future of Health Systems in the Shadow of COVID-19

Against the backdrop of COVID-19, preparing for the unexpected must become the norm. It is time for diagnostics to help co-create an ecosystem that is more agile, effective and innovative.

Read More